Review Midterm 1												
Wednesday, April 26, 2023 8:48 AM												
Wednesday, 1, 1, 11, 123, 2023												
		an	」」			^						
review sequences: (an) = a,, a2, a3	ex)	a _n	- a		n ż	0						
• write terms	1)	write	۹, ,	A2.	a ₃ a	lu						
					1							
convergent: Kim an (MCT, comparison test)	ao	= 1/20	: 1									
decide divergent oscillating divergent oscillating comparison test oscillating comparison comparison comparison test	a.	- /a.	ير!.									
town a co or -co (companson test)												
hierarchy growth: ln(n) << nk << an << n! << nn	ag	. /3.	- 1/4									
	4,	- 1/23	الم :									
MCT: increasing & bounded above decreasing & bounded below		-										
comparison test: on an lim by = converges - lim an = converges	a)	show	(an)	dec	rcasin	ıg	(an+1 4	an)				
				1				2011		14	2 /	
		a'	n+1 -	` a	^	,		a		, ,	α •	
	3)	Show	an	برا:	, n	Con	verges					
				-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	1.	comp	ute	dire	ectly							
	2	an- b	9	Sha.	. •	.			7			
	۳.	Lat.	a	31104	0.9	W EC FC	asing		- { -	MCT = (1	nverge	\$
		als	9 9,	20	2 (Ο,	bounde	d below	ر پا			
	*	PPCOTSI		0055	el Mala		1 0	. Valu	e bou	inded	bu	*
	- 11			poss	19	436						
~												
review series: $\sum_{n=1}^{\infty} a_n$												
* decide convergent vs divergent	an -	0										
- integral test - alternating series test → Σ(-1) ⁿ · an €	an 2 (an 0										
- ratio test \rightarrow with n - comparison test $\rightarrow \sum_{n^2+19}$												
- root test → with man												
two special types:												
• p-series: $\sum_{n=1}^{\infty} \frac{1}{n^n}, p>0 \rightarrow convergent if p>1$												
• geometric series: ∑ rn = a → if r 41 → convergent												
(absolute convergence)												
review taylor series:	ex)	given	4	F(x)	= Sir	n (x)	\$	a=0				
• taylor expansion: f(x): a0 + a1x + a2x2 + a3x3 +	£ (A)	= Sin	(0) . 4									
where $a_n = \frac{f^{(n)}(a)}{n!}$	7 (0,): cos ((0)=	'								

· 1471	gr C,	APans.	υ γι ·	TLX/=	٠, ٠,	,,,,,	24 143	х т		F (U)									
				where	an	= £(u)	(a)			£,(0)	: cos (o) = I							
•		• / >								f"(o)= -Sin	(o) = 0							
com	ate	f (x),	f'(x),	F"(x)	. (a	† yp ical	(ه و			(0)°°) : -cos	(0) : -	•						
										:									
										* tr	un ca fi	cn o	deg	ree S	→	* 2 ×			
										* tag	plor c	an n	altiply	8 p	lug in	vari	ables	*	
										* tag	lor of	aolu	nomial	= ,	alu non	nial *			
													(x), c						